The Future Of Astronomy: NASA's James Webb Space Telescope

Illustration credit: NASA.With every extra inch of aperture, every extra second of observing time, and every extra atom of atmospheric interference you remove from your telescope’s field-of-view, the better, deeper and more clearly you’re able to see the Universe. When the Hubble Space Telescope began operation in 1990, it ushered in a new era in astronomy: that of space-based astronomy. No longer did we have to fight with the atmosphere; no longer did we have to worry about clouds; no longer was electromagnetic scintillation a problem. All we needed to do was point our telescope at the target, stabilize it, and collect photons. In the 25 years since, we’ve began to cover the entire electromagnetic spectrum with our space-based observatories, getting our first true glimpse of what the Universe really looks like in every wavelength of light.
Image credit: NASA / JPL, via Wikimedia Commons user Bricktop.
Image credit: NASA / JPL, via Wikimedia Commons user Bricktop.
But as our knowledge has increased, so has our sophisticated understanding of what the unknowns are. The farther we look away in the Universe, the farther back in time we look as well: the finite amount of time since the Big Bang coupled with the finite speed of light ensures that there’s a limit to what we can see. Moreover, the expansion of space itself works against us, by stretching the wavelength of the emitted starlight as it travels through the Universe towards our eyes. Even the Hubble Space Telescope, which gives us the deepest, most spectacular view of the Universe we’ve ever uncovered, is limited in that regard.
The GOODS-South field (Hubble Component). Image credit: NASA, ESA, R. Windhorst, S. Cohen, M. Mechtley, and M. Rutkowski (Arizona State University, Tempe), R. O'Connell (University of Virginia), P. McCarthy (Carnegie Observatories), N. Hathi (University of California, Riverside), R. Ryan (University of California, Davis), H. Yan (Ohio State University), and A. Koekemoer (Space Telescope Science Institute).
The GOODS-South field (Hubble Component). Image credit: NASA, ESA, R. Windhorst, S. Cohen, M. Mechtley, and M. Rutkowski (Arizona State University, Tempe), R. O’Connell (University of Virginia), P. McCarthy (Carnegie Observatories), N. Hathi (University of California, Riverside), R. Ryan (University of California, Davis), H. Yan (Ohio State University), and A. Koekemoer (Space Telescope Science Institute).
Hubble is an amazing piece of equipment, but it’s fundamentally limited in a number of ways:
  • It’s only 2.4 meters in diameter, limiting its resolving power the farther away we look in space.

Comments